
N94-14636

Parallel O(Log n) Algorithms for Open- and Closed-Chain Rigid Multibody

Systems Based on a New Mass Matrix Factorization Technique

Amir Fijany

Jet Propulsion Laboratory, California Institute of Technology

Pasadena, CA 91109

Abstract

In this paper, parallel O(log n) algorithms for computation of rigid

multibody dynamics are developed. These parallel algorithms are derived by

parallelization of new O(n) algorithms for the problem. The underlying feature

of these O(n) algorithms is a drastically different strategy for decomposition

of interbody force which leads to a new factorization of the mass matrix (_).

Specifically, it is shown that a factorization of the inverse of the mass

matrix in the form of the Schur Complement is derived as _-I = _ _ _*M-I_,

wherein matrices _, _, and _ are block tridiagonal matrices. The new O(n)

algorithm is then derived as a recursive implementation of this factorization

of _-1. For the closed-chain systems, similar factorizations and O(n)

algorithms for computation of Operational Space Mass Matrix A and its inverse

A -I are also derived. It is shown that these O(n) algorithms are strictly

parallel, that is, they are less efficient than other algorithms for serial

computation of the problem. But, to our knowledge, they are the only known

algorithms that can be parallelized and that lead to both time- and processor-

optimal parallel algorithms for the problem, i.e., parallel O(log n)

algorithms with O(n) processors. The developed parallel algorithms, in

addition to their theoretical significance, are also practical from an

implementation point of view due to their simple architectural requirements.

PREGEDtNG PAGE BLANK NOT FILMED

243

n

P
l,j

m
i

h, k i

I
i,J

C nxn

0 _ COI{O }C_ nxl
!

Q -_- col{Ql}eNnxl

_ col{QI }EN nxl

_y A= cot{T }c[R nxl
i

co , c,i
1 l

V 1 , V i

f , n
i !

1 _1 _

n] C_R 6xl

F = i

t f
IJ

H c_6xn I
i

Total number of Degrees-Of-Freedom (DOF) of the system

Position vector from point Oj to point Oi, Pi,l,i = Pt

Mass of body i

First and Second Moment of mass of body i about point 0
i

Spatial Inertia of body i about point Oj,

= I = l I eR 6x6 (" denotes the transpose)
I1' I ! hi mlU

Symmetric Positive Definite (SPD) mass matrix

Vector of joint positions

Vector of joint velocities

Vector of joint accelerations

Vector of applied (control) joint forces/torques

Angular and linear acceleration of body i (frame i+l)

Linear velocity and acceleration of body i (point 0)
I

Force and moment of interaction between body i-I and body i

Spatial acceleration of body i

Spatial force of interaction between body i-I and body i

Spatial axis (map matrix) of joint i

Table I. Notation

Zi+l
Body i

Zi _ 0i+1

CM, : Center of Mass of Body i

Figure 1. Body, Frames, and Position Vectors

244
" " '" • 6V_

I. Introduction

The multibody dynamics problem concerns the determination of the motion of

the mechanical system, resulting from the application of a set of control

forces. In the context of robotics, the dynamic simulation problem is better

known as the forward dynamics problem.

From a computational point of view, the multibody dynamics problem can be

stated as the solution of a linear system as

• Q = _ - b(e,Q) = _T' or (1)

= _-'_ (2)
T

where the vector b(O,Q) represents the contribution of nonlinear terms and can

be computed by using the recursive Newton-Euler (N-E) algorithm [3] by setting

A coI{F }eR TM
the joint accelerations to zero. Hence, in Eqs. (I)-(2), _T = T|

represents the acceleration-dependent component of the control force.

The developed serial algorithms for the problem can be classified as the

O(n 3) algorithm [4], the O(n 2) algorithm [5], and the O(n) algorithms [6-13].

See also [14] for more complete references as well as an extensive analysis

and comparison of these algorithms. In addition to these algorithms, which are

based on rather direct methods, there is also another class of indirect (or,

iterative) algorithms for solution of Eq. (I) which include the O(n 2)

conjugate gradient algorithms [4,]5,16].

It seems that the development of serial algorithms for the problem has

reached a certain level of maturity. Asymptotically, the O(n) algorithms

represent the fastest possible serial method for the problem, since, given the

n-component input (vector of control force), the evaluation of the n-component

output (joint accelerations) requires at least O(n) distinct steps in the

computation. Hence, any further improvement in computational efficiency of the

O(n) algorithms can only be achieved by reducing the coefficients (see for

example [10,14] wherein this reduction has been achieved by avoiding explicit

computation of the term b(8, Q)).

The relationship among the different direct algorithms is also well

understood, and two fundamental results have been established [14]. The first

is that, at a conceptual level, the O(n) algorithms can be essentially

considered as a procedure for recursive factorization and inversion of mass

matrix, i.e., recursive computation of _-i_ [9,10,11,14]. The second result
T

iS that, at a computational level, the O(n) algorithms lead to the computation

of the articulated-body inertia [7]. The reader is referred to [14] for an

245

extensive analysis of commonalities in the computation of the O(n) algorithms.

It should be emphasized that our analysis of the parallel computation

efficiency of different algorithms relies on these two results.

Despite the significant improvement in the efficiency of serial algorithms,

even the fastest algorithm is still far from providing real-time or faster-

than-real-time simulation capability. With the maturity of serial algorithms,

any further significant improvement in computational efficiency can be

achieved only through exploitation of parallelism. This is further motivated

by advances in VLSI technology that have made parallel computation a practical

and low-cost alternative for achieving significant computational efficiency.

However, unlike serial computation, there are few reports on the development

of parallel algorithms for the problem.

The development of efficient parallel algorithms for multibody dynamics is

a rather challenging problem. It represents an interesting example for which

the analysis of the efficiency of a given algorithm for parallel computation

is far different and more complex than that for serial computation. In fact,

our previous analysis [I,2,17] and the results of this paper clearly show that

those algorithms that are less efficient (in terms of either asymptotic

complexity or number of operations) for serial computation provide a higher

degree of parallelism and hence are more efficient for parallel computation.

A preliminary investigation of parallelism in the computation of forward

dynamics, analyzing the efficiency of existing algorithms for parallel

computation, is reported in [2]. The main result of this investigation was

that the O(n 3) algorithms provide the highest degree of parallelism and are

the most efficient for parallel computation. Specifically, it was shown that

I. Theoretically, the time lower bound of O(log2n) can be achieved by

parallelization of the O(n 3) algorithms by using O(n 3) processors.

2. Practically, the best parallel algorithm for the problem is of O(n) which

results from parallelization of the O(n 3) algorithms on a two-dimensional

array of O(n 2) processors. This parallel algorithm, although of O(n), achieves

a significant speedup over the best serial O(n) algorithms by reducing the

coefficient of the n-dependent term on polynomial complexity by more than two

orders-of-magnitude. Different approaches for parallelization of the O(n 3)

algorithms have also been proposed in [18,19].

The analysis in [I] also led to two additional important conclusions. The

first was that, if indeed there can be a parallel algorithm achieving the time

246

lower bound of O(log n) with an optimal number of O(n) processors, then this

parallel algorithm can only be derived by parallelization of an O(n) serial

algorithm. However, the analysis in [I] showed that the parallelism in the

existing O(n) algorithms was bounded, that is, at best only a constant speedup

in the computation can be achieved, leading to the parallel O(n) algorithms.

More specifically, it was shown that the recurrence for computatlon of the

articulated-body inertia is strictly serial and cannot be parallelized (see

Sec. II.D). Hence, the second conclusion in [I] was that if the forward

dynamics problem is to have the time lower bound of O(log n) for its

computation, it can only result from a totally different serial O(n)

algorithm. Such an algorithm can only be derived by a global reformulation of

the problem and not an algebraic transformation in the computation of existing

O(n) algorithms.

Physically, a given algorithm for multibody dynamics can be classified

based on its force decomposition strategy. Mathematically, the algorithm can

be classified based on the resulting factorlzation of the mass matrix which

corresponds to the specific force decomposition (see Sec. II.B and C). A new

algorithm based on a global reformulation of the problem is, then, the one

that starts with a different and new force decomposition strategy and results

in a new factorizatlon of mass matrix.

Interestingly, a recently developed O(n) algorithm in [21-24] for a single

serial chain represents such a global reformulation of the problem. It differs

from the existing O(n) algorithms in the sense that it is based on a different

strategy for force decomposition (see Sec. III). We will show that this

strategy leads to a new and completely different factorlzation of M -i. This

factorization, in turn, results in a new O(n) algorithm for the problem which

is strictly efficient for parallel computation, that is, it is less efficient

than other O(n) algorithms for serial computation but, as will be shown, it

can be parallelized to achieve the time lower bound of O(log n) with O(n)

processors. We show that this factorization of M -i also directly leads to new

factorlzations and O(n) algorithms for closed-chain systems. Again, these new

O(n) algorithms for closed-chaln systems can be parallelized to derive both

time- and processor-optimal parallel algorithms for the problem, i.e.,

O(]og n) parallel algorithms with O(n) processors. Furthermore, the new

factorlzations for both open- and closed-chain systems can be uniformly

described in terms of the Schur Complement and provide different and deeper

physical insights into the problem.

247

This paper is organized as follows. In Sec. If, the O(n) algorithms, i.e,

the Articulated-Body Inertia algorithm and recursive factorization and

inversion of mass matrix, are briefly reviewed. In Sec. III, the Constraint

Force algorithm and the new factorization of mass matrix are derived. In

Sec. IV, new factorizations and O(n) algorithms for closed-chain systems are

presented. In Sec. V, parallel O(log n) algorithms for both open- and closed-

chain systems are briefly presented. Finally, some concluding remarks are made

in Sec. VI.

II. The O(n) Algorithms: Recurslve Factorlzation and Inversion of Mass Matrix

A. Notation and Preliminaries

In our discussion of the O(n) algorithms, a set of spatial notations is

used which, though slightly different from those in [8-11, 21-24], allows a

clear understanding and comparison of the algorithms (see also Table I and

Fig. I). For the sake of clarity, the spatial quantities are shown with

upper-case italic letters. Here, only joints with one revolute DOF are

considered. However, all the results can be extended to the systems with

joints having different and more DOF's.

With any vector V, a tensor V can be associated whose representation in

any frame is a skew symmetric matrix as

= (z) 1
(y)

0

V
(x)

V
(y) 'where V(x), and V(z) are the components of V in the considered frame.

The tensor V has the properties that V = -V and V V = V xV . A matrix
12 1 2

associated to the vector V is defined as

= and V =

0 U - U

where here (as well as through the rest of the paper) U and 0 stand for unit

and zero matrices of appropriate size. The spatial forces acting on two

rigidly connected points A and B are related as

F = P F
B A,B A

where P denotes the position vector from B to A. If the linear and angular
A,B

velocities of point A are zero then

248

The matrix PA,B has the properties PA,BPB, c : PA,C and [PA,B)-I = PB,A"

In derivation of equations of motion, it is assumed that the nonlinear term

b(8, Q) is explicitly computed by using the recurslve N-E algorithm. For both

the articulated-body algorithm (as shown in [14]) and the new algorithm, this

explicit computation can be avoided. However, this does not affect the

efficiency of the algorithms For parallel computation. In Fact, as for the

O(n 3) and O(n 2) algorithms [16,17], the explicit computation of b(8, Q)

provides additional parallelism which can be exploited to further increase the

speedup in the computation.

By computing the term b(8, Q) and subtracting it from _ (Eq. 1), i.e., by

explicitly computing _T' the multibody system can be assumed to be a system at

rest which upon the application of the control force _T accelerates in space.

The equation of motion for body i, as a single rigid body, is given as

F = I_
I I I

and as an interconnected member of the serial chain is given as (Fig. 1)

^O °

--P v + S d (3)l[! 1-i i-1 1

f = It) + _F (4)
! i i 1 i+1

Eqs. (3)-(4) represent the simplified N-E algorithm (with nonlinear terms

excluded) for the serial chain.

Equation (4) represents the interbody force-decomposition strategy of the

N-E formulation. As shown in [9-11], this force-decomposition strategy leads

to a specific factorization of _. To see this, let us rewrite Eqs. (3)-(4) as

- ____, = H_ (s)

F -_r =x_ . (6)
I , 1+1 i i

and define

_ diag{Hl}_ 6nxn

= } E_ 6nx6n
_ diag{l i

_ collOl}e_6nxl

_ col{F }e_ 6nxl
i

249

_D -I =

U

b
n,n-I

0

0

U

U

n-l,n-2

0

U

0 -P U
2,1

/% U
npn-1

n,n-2 n-l,n-2
U

_6nx6n

n,1 n-l,1 n,1

C_ 6nx6n

Eqs (5)-(6) can now be rewritten in a global form as
m-

(7)

A factorization of mass matrix, associated with the force decomposition in

Eq (4), can now be derived as

e

= _ _ = _._-,_# = _._ _(p-)-a_ (9)
T

which, in comparison with Eq (I), represents a factorization of • as

= H'P-I_(P')-I_ (10)

Although the matrices p-l, 9, and (p.)-I are square and have trivial inverses,

the matrices H" and R are not square. This prevents the computation of _-1

from the above factorization.

B. The Articulated-Body Inertia (A-BI) Algorithm

The Articulated-Body Inertia (A-BI) algorithm is based on a decomposition

of F as [8]
l

F = IA_ ' + T A (11)
1 1 1 1

where I A is the articulated-body inertia of body i. The force T A is a function
I !

of I A and F for j = n to i+l. If I A (and hence TA), for j -- n to i, is
l TJ l J

computed, then the projection of F.q. (6) along the joint axis i ieads to a new

equation with _' as the only unknown
I

O

F = H F = H'IAO + H'T A (12)
Ti 1 i t i i l i

250

Starting from i = 1, the Joint accelerations can then be recursively computed

from Eg. (12). This clearly explains the motivation behind the specific force

decomposition in Eq. (11), which, unlike the one in Eg. (4), leads to the

solution for Joint accelerations.

The computational steps of the A-BI algorithm are given as [8]

For i = n to I

= (}A. ,13,IA I + p IA -I A H (H ° 1 A H)-IH* IA Pt n
i i i i+I I+I I+1 i+1 l+1 I+I i+1 I+1 n

= [T A _ IA H • IA H)-1 " TA)/ TA = 0 (14)/_l i+1 i+1 |+I(Hi+I S+l S+l (FT|+I- HI+I l÷l n

For i = I to n

(_t (FTI - H'IAp" tz - H'TA)(H" I A H)-x II = 0 (15)= i i 1-1 i-1 i i i+l i+l i+1 o

^o •

= P V + Ht(_ (16)_ri 1-1 i-1 1

C. Recursive Factorlzation and Inversion of Mass Matrix

In [9-II], starting with the factorlzation in Eq. (I0), an alternate

factorization of the mass matrix in terms of square factors is derived as

= (U + R'P-I_)_(U + R'p-l_)" (17)

_ U - _ e_ 6nx6n
P

_A _ diag{iA}=_6-xSn
|

= _ _ }E_ nxn (18)D A diag{D1} = diag{H I H l

_ diag{Gi} = 9AMD -I e_ 6nxn (19)

_ E _ CR 6nxn (20)
P

The nxn matrices (U + R'P-I_), _, and (U + R'_-I_)" are, respectively, lower

triangular, diagonal, and upper triangular. The factorizatlon in Eq. (17)
o

represents the LDL factorlzation of the SPD mass matrix (which is unique) in

an analytical form. Furthermore, due to the positive definiteness of _, the

matrix D is nonsingular, that is, D I * 0 (this is also proved in [8]).

In [9-11] it is shown that the inverse of the factor (U + M,p-IK) can be

derived in an analytical form as

(U + R'P-IK) -1 = (U - _'@K) (21)

{@t }e_6nx6n is a lower triangular matrix withwhere @ = J

251

- * c_6X6,= P (U G H) i = n to 1 and j = i-1 to 1
@l,l = U and @|,j i,j I l

From Eqs. (17) and (21), a factorization of _{-1 is derived as

• -_ = (u - _'_()'_)-1(u - R'_()

(22)

(23)

The significant contribution of the work in [9-11] is to exploit further

structure of the mass matrix (in addition to the symmetry and positive-

definiteness) and explicitly obtain the above factorization of _-1 It also

demonstrates that the force decomposition in Eg. (11) corresponds to this

factorization of _-I If the articulated-body inertia is computed from

Eq. (13) and the terms _ and _ are computed according to Eqs. (18)-(20) and

(22), then from Eqs. (2) and (23) the solution for Q is obtained as

= (U - _'_)'_-ICU - _'_)_ (24)
T

In [9-11,14] it is shown that the recursive implementation of Eq. (24) results

in an O(n) algorithm whose computational steps (with some minor modifications)

correspond to those in Eqs. (13)-(16).

D. ParaIielism in the O(n) Algorithms

The main bottleneck in parallel computation of the A-BI algorithm is the

computation of IA from Eg. (13), which can be represented, at an abstract
I

level, as the solution of a set of first-order nonlinear recurrences

X i = C + ¢2 (x)/¢1) = C + ¢)l 1+1 (Xl+l l (Xi+l

where C is a constant, ¢1 and ¢2 are polynomials of first and second degreel

and deg ¢ = Max (deg ¢1' deg ¢2) = 2. It is well known that the parallelism in

computation of nonlinear recurrences of the above form and with deg ¢>I is

bounded [25,26], that is, regardless of the number of processors used, their

computation can be speeded up only by a constant factor. This is due to the

fact that the data dependency in nonlinear recurrences and particularly those

containing division is stronger than in linear recurrences [26]. Hence, the

parallelism in the O(n) articulated-body based algorithms is bounded and their

parallelization leads to parallel O(n) algorithms which are faster than the

serial algorithms only by a constant factor. Note that a rather simple model

was used to describe the nonlinear recurrences for computation of the

articulated-body inertia, while they are far more complex than those usually

studied in the literature, e.g., in [25,26].

However, the computations in Egs. (14)-(16) can be fully parallellzed since

they can be transformed into a set of first-order linear recurrences (here,

252

due to the lack of space, we do not discuss these transformations). This

clearly indicates that the main obstacle in parallelization of the O(n)

articulated-body based algorithms is the computation of the articulated-body

inertia. It should also be mentioned that the O(n) algorithm in [7], which was

originally developed for serial chains with 3-DOF spherlcal joints, Involves

nonlinear recurrences which are even more complex than those for computation

of articulated-body inertia.

III. The Constraint Force Algorithm

A. Basic Force Decomposition and Algorithm

The algorithm in [21-24] is based on a decomposition of interbody force as

F = H F + W F (25)
1 I Ti I SI

where F is the constraint force and Id is the orthogonal complement of H
Sl 1 1

which is defined [27,28] by

• •

HH + IdlJ = U (26)
I i 1 i

The matrix H is a projection matrix and hence
i

e

H H = U (27)
i i

It then follows that the matrix lg is also a projection matrix and that [27]
I

• • •

H W = IJH = 0 and W W = U (28)
i I i I i i

C_ 6xnl and _ c_ 6x(6-nl)
For a joint I with ni DOF's (ni<6), it follows that H i l

For a more detailed discussion on these projection matrices see [27,28].

The decomposition in Eq. (25) seems to be more natural (and perhaps more

physically intuitive) than those in Eqs. (4) and (ll) since it expresses the

interbody force in terms of two physically more basic components: the control

(or, working) force and the constraint (or, nonworking) force. In fact, as

stated in [21], the basic idea of the algorithm was first presented in [29]

for a system of particles, and later in [30] it was extended to rigid body

systems. However, both works were concerned with the constraint stabilization

problem and the algorithm had not been used as an alternative procedure for

the dynamic simulation problem. Also, the independent derivation of the

algorithm in [21-24] was mainly motivated by its suitability for parallel

iterative solution of the dynamic simulation problem.

It is not surprising that the algorithm has not been considered as a viable

alternative for direct serial and parallel solution of the multibody dynamics

problem. The decomposition in Eq. (25) naturally leads to the explicit

253

computation of the constraint (and interbody) forces, which has also motivated

the designation of the algorithm as the Constraint Force (CF) algorlthm. In

fact, researchers have always argued that since the constraint forces are

nonworking forces, their computation is not needed and leads to computational

inefficiency. Consequently, the elimination of the constraint forces from the

equations of motion has always been considered as a necessary first step in

the derivation of efficient algorithms.

Here, for the sake of clarity and self-completeness, we first redrive the

algorithm as presented in [21-24]. We then show that the force decomposition

in Eg. (25) leads to a new factorlzation of _-i. This allows a better under-

standing of the algorithm as well as its comparison with other algorithms,

particularly the recursive factorization and inversion of mass matrix.

Equation (25) can be written in global form as

= _ + W_ (29)
T S

= A col{F } e_ snxl. For global matrices _ andwith W A diag{Wl}c_6nx5n and _s = s|

W, Eqs. (26)-(28) are written as

I I • • U m

MH + _W = U, _ W = W _ = 0, and H H = • W = U (30)

From Eqs. (7)-(8) and (30), it follows that

= j-l_ (31)

• o. •

w_v = w_ = 0 (32)

''#-Ip_ = 0 (33)

and substituting Eq. (29) into Eq. (33) yields

M_ = -Z_ (35)
s T

where _ _ W'2"8-1PW c_ 5nxsn and Z _ W'2"_-IPH e_ 5nxn. The global constraint

force, _s' is computed as the solution of the linear system in Eq. (35), where

is a symmetric, positive-definite, block tridiagonal matrix. The global

interbody force (_) and acceleration (_) are then computed from Eqs. (29) and

(31). Finally, the joint accelerations are computed from Eqs. (7) and (30) as

i @@. oo.

The solution of the llnear system in Eq. (35) represents the most

computationally intensive part of the algorithm. In [21-24], exploiting the

structure of matrix _ (i.e., symmetry, positive-definiteness, and block

254

tridiagonal form), a set of iterative algorithms for solution of Eq. (35) is

developed. It is shown that these Iteratlve algorithms can be efficiently

parallelized and implemented on a simple architecture with n processors while

the rest of the computation is performed serially. Although the computational

complexity of the developed parallel iterative alEorlthms is still of O(n),

the extensive simulation in [21-24] has shown that the alEorithms achieve

speedup over the serial A-BI algorithm.

B. A New Factorization of _-I

Here, we extend the work in [21-24] by first deriving an operator form of

the alEorithm and then showing that the force decomposition in Eg. (25) indeed

leads to a new and interesting factorization of A -l. From Egs. (29) and (34)

the global interbody force can be computed as

From Eqs. (8) and (37), _ is computed as

and finally from Eqs. (36) and (38), Q can be computed as

which represents a compact operator form of the algorithm. In comparison with

Eg. (2), an operator form of _-I, in terms of its decomposition into a set of

simpler operators, is given as

C. Alternate Approach for Factorization of _-i based on the Schur Complement

The operator form of _-I given by Eq. (40) represents an interesting

mathematical construct. To see "this, let

A= H'_p°9-1_pH c_nXn

_[-I is now written as

Consider a matrix _f defined as

._ i_ [:B'_" _B_] cIR6nx6n

(41)

(42)

255

then _ - _,_-I_ is the Schur Complement of _ in _ [31] and is designated as

(,_/_). The structure of matrix ,_ motivates a different and simpler approach

for derivation of the algorithm. Assume that the spatial acceleration of body

i is written in terms of two components: one generated by acceleration of

DOF's (QI), and the other generated by acceleration of Degrees-Of-Constraint

• c_5xl(DOC's), denoted as _ (of course, by definition _ = 01. Then rewrite
1 !

Eqs. (5) and (7) as

0 - b" O =Hi +w# (43)1-1 i-1 1 1 1

: + wf (44)

with T _ CoI{_}EN 5nxl. From Eqs. (8), (29) , and [44), it then follows that

s T

Z and Q can be obtained by multiplying both sides of Eq. (45) first by If" and

tlb

then by /_ as

W'_D'_-I_DIf_ + W'_P'J-IP_Y = _ (461
s T

R'_P'J-I:PW_ + R'P'_-I:PR_ = Q, or (47)
s T

_ + _ = _ (48]
s T

II

_ + C_ = Q (49)
s T

F.q. (39) is then obtained by setting _- = 0 and using the Guassian elimination

for solving for YT" If the vectors of total acceleration (ac) and total force

(5 _) are defined as
G

then Eqs. (48)-(49) can be written as

Z_ = a (50)
G G

The matrix E can be interpreted as the inverse of the augmented mass matrix;

it relates the total force and acceleration. _-I is then the Schur Complement

of _ in E, that is,

- = (_/_) (51)

It should be mentioned that an even simpler physical interpretation of the

algorithm along with an alternate direct approach for derivation of Eqs. (48)-

(49) can be given by noting the physical interpretation of the operators _, P,

256

_-I W, etc. and the matrices _, _, and _ [32].

It should also be pointed out that by using the matrix identity

(C - XDY) -I = C-I + C-IX(D -I - YC-IX)YC -I (52)

in Eqs. (40)-(41) an operator expression of • can be obtained as

= (_,_,_-Ip_)-I + (_°p'_-1_)-1(_'_'_-1_W) ICW°_'_-IpW) _ (_,p,_-ap_)

(_°_*_-_p_)-1 (_,p°_-IpW)l -I(_'_'_-_) (_*p*_-Ip_)-1 (53)
J

An O(n 2) algorithm for computation of the mass matrix can be derived based on

the above expression of • (which is asymptotically as fast as the best serial

algorithms). However, this operator expression of • is significantly more

complex and its associated algorithm is less efficient than other operator

expressions and their associated algorithms in Egs. (10) and (17).

D. Serial Computation of the Constraint Force Algorithm

An efficient serial implementation of the O(n) CF algorithm is based on

rewriting Eg. (39) as

= U - J-xPW(W°P _ Ip_) IV _ _-_p_ (54)

Here, the key to achieving greater efficiency for both serial and parallel

computation is to simply perform, as much as possible, the matrix-vector

multiplication instead of matrix-matrix multiplication. In this regard, the
o

matrices _, _ , and _ do not need to be computed explicitly and only the

explicit computation of _ is needed. Given _T' the computational steps of the

algorithm consist of a sequence of matrix-vector multiplications and vector

additions where the matrices, except for A -l, are either bidiagonal or

diagonal block matrices. Multiplication of a vector by _-1 is equivalent to

the solution of a symmetric, positive-definite, block tridiagonal system.

The vector _ can be computed in O(n) steps by using the N-E algorithm
T

[3]. The matrix-vector multiplications with diagonal or bidlagonal block

matrices can be performed in O(n) steps. The solution of the block tridiagonal

_ystem can also be obtained in O(n) steps by using block LDL factorization

[33] in O(n) steps. Therefore, the computational complexity of the serial CF

algorithm is of O(n).

Note that, however, Eg. (54) is presented in a coordinate-free form. Hence,

before its implementation the tensors and vectors involved in its computation

257

should be projected onto a suitable frame. The choice of optimal frame for

projection of equations and other issues regarding efficient serial
implementation of the CF algorithm are extensively discussed in [1], wherein

the computation cost in terms of numberof operations is also evaluated (see

Table II). However, as can be seen, even with the most efficient schemesfor

serial implementation, the CF algorithm is significantly less efficient than

the other algorithms for serial computation (see Table II). For large n, the

A-BI algorithm is more efficient than the CF algorithm by a factor of about
2.5 (in terms of the total numberof operations) for serial computation.

Obviously, for smaller n (say n<12), the CF algorithm is also significantly
less efficient than the other O(n 2) or O(n 3) algorithms.

It should be mentioned that the explicit computation of _-1 (though it is

not usually needed) can be performed in O(n 2) steps. To see this, note that in

Eq. (41) the computation of the term a-l_ is equivalent to the solution of a

block tridiagonal system with n right-hand sides which can be computed in

O(n 2) steps. _-1 can then be explicitly computed by performing a matrix-matrix

multiplication and a matrix-matrix addition, each in O(n 2) steps. This leads

to a total computational complexity of O(n 2) for explicit evaluation of _-1.

IV. New Mass Matrix Factorizations for Computation of Closed-Chain Multibody

Dynamlc Systems

In this section we briefly discuss the application of the new factorlzation

of _-1 to the computation of dynamics of closed-chaln systems. Our discussion

follows the treatment of the problem as presented in [34-37], wherein it is

shown that the main computational problems are the evaluation of the

Operational Space Mass Matrix A [38,39] and its inverse A -I. Note that the

computation of A is also required for the task space dynamic control of single

robot arms [38,39]. The matrices A -I and A are defined as

A = (ffM-1ff')-Ic_6×6 and A-1 = ff_-lff'c_6X6 (55)

where ffc_6x6n is the 3acobian matrix. In [34-37] recursive O(n) algorithms are

developed for computation of A-1, and the matrix A is then computed by

explicit inversion of A-I. The main computational step in these algorithms is

the computation of the articulated-body inertia as in Eq. (13). Therefore, as

discussed in Sec. II.D, these O(n) algorithms are also strictly serial.

Here, we show that the new factorization of _-I directly leads to new

factorizations of both A -I and A as well as new O(n) algorithms for their

258

computation. These new factorizations are similar to that of _-I since they

can be described in terms of the Schur Complement and thus provide simple

physical interpretation and a different and deeper insight into the problem.

More importantly, however, the resulting algorithms can be parallelized to

derive both time- and processor-optlmal parallel algorithms, i.e., O(1og n)

parallel algorithms with O(n) processors, for computation of A-I and A.

A. A New Factorization of the Inverse of Operational Space Mass Matrix A-l

An operator expression of ff is derived in [34,35]. Usin E the notation of

this paper, this operator expression is given as

^" ... 0]e_ 6x6n From Eqs. (40) and (56), an operatorwhere B = [P 0 0
n

expression of A-I is then derived as

A-1 : _(_')-IH{_'_'j-I_ _ _'_'_-I_(W'_'j-I_)-I_'_'j-I_H}_'(_)-I _"

= _((_')-*(H_')_'Cj -I - #-'p_CW'p'#-xpW)-'W'_'_-_)PC_R')CP)-'}_" (57)

The above expression can be simplified by noting that from Eq. (30), we have

• $

HH = U - WW (58)

By inserting Eq. (58) into Eq. (57) and after some involved algebraic

manipulations, a simple operator expression of A-I is derived as

A-* = _#-_" - _-*2W(W'P'_-IPW)-IW'_'_-_B" (59)

This expression can be further simplified since

: _-'_" = P'z-_P = z-' (60)
n n n n,n+!

E" = _-IPW = [P'I-'W 0 0 ... 0]c_ 6xs" (61)
nn n

This factorization of A-I is then written in the form of the Schur Complement

A-* = _ - E'_-IE (62)

Note that the matrix _ is the same as in Eq. (41). Let us define a matrix E'

A-_ is then the Schur Complement of _ in _', i.e., A-_ = (_'/_). As in the

previous section, based on the Schur Complement factorization of A-_ and the

structure of matrix _', a set of linear equations can be formed Ieading to

both simple physical Interpretation and aIternative derivation of this

factorization of A-1 (see [40] for a more detaiied discussion).

259

From Eq. (62), A-I can be explicitly computed in O(n) steps as follows. The

term _-IE can be computed in O(n) steps since it is equivalent to the solution

of a block tridiagonal system wlth six right-hand sides. A-I is then computed

by performing a matrix-matrix multiplication and a matrix-matrix addition,

each with a cost of 0(I), leading to a total computation complexity of O(n).

However, usually the multiplication of A-1 by a vector, say Fn÷l, rather than

the explicit computation of A-I is needed. In this case, it is significantly

more efficient to directly compute A-IFn.I rather than first explicitly

compute A-I and then perform the matrix-vector multiplication. Note that the

computation of A-IF is also done in O(n) steps.
n+1

B. A New Factorization of Operational Space Mass Matrix A

The operator expression of A is derived by using the matrix identity in

Eg. (52) for inverting the matrix A-I in Eg. (62) as

h = (_) - E'_-16) -I = _)-1 _ _-IE'(EI)-I E" _ _)-IE_)-I = (/39-I_.)-I _ (64)

(_9-I_")-I_-1_W(_" _" (9-I_" (_9-I_")-*_9-I _ 9-I)pW}-IW-p-j-1_- (_9-18")-I

The factorizatlon of A can be further simplified by noting that

= D-1 = (/3_-I/_')-I= (i-1)-1 = I (65)
n, n+l n, n+l

_#-I_Dw = [P'I-IW 0 0 ... 0] (66)
n n n

* = (/3-1_')-1_j-1_p_ = [(_)-Ii (_')-I_'i-1W 0 0 ... 0] (67)
n n n n n n

= [,_ w oo... o]
n, rI÷I 11

9,-I = _-1_*(_9-1_')-I_-I - _-1 = Diag{l,-1}e_6nx6n (68)
!

with I '-I -I -I= 0 and I '-I = , i = n-l, n-2 I
n ! i

= W'_P'_ '-I_Dw (69)

Note that the matrix _ is a rank one modification of matrix _ in Eq. (41). The

factorlzation of A is then written in terms of the Schur Complement as

A = _ - _'_-*_ (70)

Let us define a matrix E'' as

(71)

A is then the Schur Complement of F in _'', i.e., A = ($''/_). Again, based on

the Schur Complement factorization of A-I and the structure of matrix _', a

set of linear equations can be formed leading to both simple physlcal

260

interpretation and alternative derivation of this factorization of A-I (see

[40] for a more detailed discussion).

As for A-I, from Eq. (70) A can be explicitly computed in O(n) steps since

the term F-19_ can be computed as the solution of a block tridiagonal system

with six right-hand sides. A is then computed by performing a matrix-matrix

multiplication and a matrix-matrix addition, each with a cost of O(I), leading

to a total computation complexity of O(n). However, usually the multiplication

of A by a vector, say Vn+ 1, rather than the explicit computation of A is

needed. In this case, it is significantly more efficlent to directly compute

AV rather than first explicitly compute A -I and then perform the matrix-
n+l

vector multiplication. Again, note that the computation of AVn÷ 1 is done in

O(n) steps.

V. Parallel O(log n) Algorlthms for Computation of Open- and Closed-Chain

Rigid Multibody Systems

The parallel implementation of the CF algorithm for a serial open-chain

system is extensively discussed in ill. Here, we briefly present the results

of [I] and their extension to the computation of closed-chain systems.

I. Parallel O(log n) Algorithms for Open-Chain Rigid Multibody Systems

The computation of the parallel CF algorithm is performed as follows.

Step I. Projection and Computation of Matrix

The projection of vectors and tensors and the explicit computation of

matrix M is performed In 0(I) steps with n processors.

Step II. Computation of T

By using the algorithm in [20], _T iS computed in O(log n)+O(1) steps

with n processors.

Step III. Computation of _T _°_T W _°_-I_N_ T and QT T T

The computation of IT and Qs involves two sequences of matrix-vector

multiplication wherein the matrices are bidiagonaI or diagonal block matrices

and is performed in O(1) steps with n processors.

Step IV. Computation of _s = _-I_T

The SPD block tridiagonal system is solved in O(1og n)+O(1) steps with n

processors and by using the Odd-Even Elimination (OEE) variant of the cyclic

reduction algorithm [41].

261

Step V. Computation of Qs = _s = _*_°5-1PWYs and Q = Qs + QT

The computation of Qs is similar to that of QT in Step III and is

performed in 0(I) steps with n processors.

As can be seen, the overall computational complexity of the parallel CF

algorithm is of O(log n)+O(1) by using n processors. In [I] it is shown that

the algorithm can be efficiently implemented on an SIMD parallel architecture

with n processors and with a Shuffle-Exchange augmented with Nearest-Neighbor

(SENN) interconnection. The SENN interconnection allows a perfect mapping,

i.e., with no topological variation, of the parallel algorithm since it

perfectly matches the inherent communication structure of different steps of

the algorithm and thus leads to minimum communication cost. In [I] the

computation and communication cost of the parallel CF are evaluated as

(732m+653a)[log2n]+(542m+439a) and (134 [logzn] +49)c, where m, a, and c stand

for the cost of multiplication, addition, and communicating a single datum

([x] is the smallest integer greater than or equal to x).

Note that the parallel algorithm, while achieving the time lower bound in

the computation, remains highly compute-bound. The ratio of the computation

cost over communication cost is greater than 10, which indicates that the

parallel algorithm has a rather large grain size and thus can be efficiently

implemented on commercially available MIMD parallel architectures. In fact,

the parallel CF algorithm is currently being implemented on an MIMD Hypercube

parallel architecture. Furthermore, the parallel CF algorithm allows the

exploitation of parallelism at several computational levels. In [I] it is

shown that a greater speedup in the computation can be achieved by exploiting

a multilevel parallelism and implementing the algorithm on an architecture

with 3n processors.

B. Parallel O(log n) Algorithms for Closed-Chain Rigid Multibody Systems

I. Computation of A-I and A-IF
n+1

The explicit evaluation of matrix H, similar to Step I of Sec. V.A, can be

performed in 0(I) steps with n processors. The term H-1E in Eq. (62)

represents the solution of an SPD block tridiagonal system with 6 rlght-hand

sides and can be computed in O(log n)+ 0(I) steps with n processors by using

the OEE variant of the cyclic reduction algorithm. A-I is then computed by

performing a matrix-matrix multiplication and a matrix-matrix addition wherein

each operation can be performed in 0(I) steps with 0(I) processors. This leads

to a computational complexity of O(log n)+O(1) with n processors, which

262

indicates a both time- and processor-optimal parallel algorithm for evaluating

A-*. Similar results with greater computation efficiency can be obtained when

A-1Fn÷ 1 since the solution of an SPD blockevaluating tridiagonal system with

a single right-hand side is needed.

2. Computation of A-I and A-IF
n÷l

The explicit evaluation of matrix _, similar to that of _, can be performed

in 0(I) steps with n processors. The rest of the computation in Eg. (70) is

similar to that in Eg. (62). Therefore, both A-I and A-IF can be computed
n+l

in O(log n)+O(1) steps with n processors, which indicates both time- and

processor-optimal parallel algorithms for the computations. Note, however,

that, unlike the matrix _, which is always SPD, for some configurations, the

matrix F can become singular [34-37], and thus special care should be taken in

computation of Eq. (70). However, it should be mentioned that the new and

simple factorization of both A -I and A provides much better insight for the

analysis of the singularity in the computation of A [40].

VI. Discussion and Conclusion

In this paper, we presented parallel O(log n) algorithms for computation of

open- and closed-chain rigid multibody dynamics. These parallel algorithms

were derived from new O(n) algorithms for the problem. These O(n) algorithms

are based on a new force-decomposition strategy which results in new

factorizations of _-i A-I, and A, presented in Eqs. (40), (62), and (70).

Some important conceptual features of these new algorithms and their

underlying factorizations can be summarized as follows.

I. The factorizations of M -I, A -I, and A are very similar and can be described

in terms of the Schur Complement. Due to this similarity, both serial and

parallel algorithms involve similar computational steps.

2. Compared to the previous factorization of mass matrix, which is based on a

multiplicative decomposition of _-I (see Eq. (23)), the new factorization

leads to an additive decomposition of _-I which involves simpler matrices,

i.e., block tridiagonal matrices.

3. Unlike the previous approaches, wherein A-I is first recursively computed

and then A is obtained by explicit inversion of A -l, independent

factorizations for both A -I and A are derived, which allows direct computation

of either of them.

From a computational point of view, the main feature of the new algorithms

is that they are strictly parallel algorithms. That is, as was shown through

263

Algorithm Computation Cost Number of Processors

A-BI 586n - 371 -

Serial

CF 1500n - 755 -

SL CF 13ssrlog2n] + 981 n

Parallel ML CF 780[logzn] + 595 3n

O(n a) 6n+69[logzn] + 340 n(n+l)/2

A-BI: Articulated-Body Inertia Algorithm. CF: Constraint Force Algorithm

SL CF: Single Level Parallel CF. ML CF: Multilevel Parallel CF

O(n3): Parallel O(n 3) algorithm in [2].

Table II. Computation Costs of Serial and Parallel Algorithms

an extensive analysis in [I] for a single serial chain, the algorithm is less

efficient than other O(n) algorithms for serial computation (see Table II).

However, based on the analysis in Sec. II.D, they are the only known

algorithms that can be parallelized and lead to both time- and processor-

optimal parallel algorithms for the problem.

The computation costs of different serial and parallel algorithms for the

problem are presented in Table II, wherein it is assumed that m = a. As can be

seen, for small n, the parallel algorithm resulting from parallelization of

the O(n a) algorithm with O(n 2) processors is the most efficient. However, as n

increases, so does the efficiency of the parallel O(log n) algorithms.

As the last point, it should be emphasized that the parallel algorithms

developed in this paper--in addition to being theoretically significant by

proving, for the first time, the existence of both time- and processor-optimal

parallel algorithms for the problem--are also highly practical from an

implementation point of view. This is due to their large grain size and

simple communication and processor Interconnection requirements. In fact,

these algorithms are currently being implemented on a Hypercube parallel

architecture.

Acknowledgments

The research described in this paper was performed at the Jet Propulsion

Laboratory, California Institute of Technology, under contract with the

National Aeronautics and Space Administration (NASA). The_uthor gratefully

acknowledges many insightful discussions with Dr. G. Rodriguez of JPL

regarding different aspects of this research work.

264

REFERENCES

I. A. Fljany,"Parallel O(Log N) Algorithms for Rigid Multibody Dynamics,"

JPL Eng. Memorandum (Internal Document) EM 343-92-1258, August 1992.

2. A. Fijany and A.K. Bejczy,"Techniques for Parallel Computation of Mechani-

cal Manipulator Dynamics. Part If: Forward Dynamics," in Advances in

Control and Dynamic Systems, Vol. 40: Advances in Robotic Systems Dynamics

and Control, C.T. Leondes (Ed.), pp. 357-410, Academic Press, March 1991.

3. J.Y.S. Luh, M.W. Walker, and R.P.C. Paul,"On-Line Computational Scheme for

Mechanical Manipulator," ASME J. Dynamic Syst., Meas., Control, Vol. 102,

pp. 69-76, June 1980.
4. M.W. Walker and D.E. Orin,"Efficient Dynamic Computer Simulation of

Robotic Mechanism," ASME J. Dynamic Systems, Measurement, and Control,

Vol. I04, pp. 205-211, 1982.

5. D.E. Rosental,"Triangularization of Equations of Motion for Robotic

Systems," J. Guidance, Control, and Dynamics, Vol. 11, pp. 278-281, 1988.

6. A.F. Vereshchagin,"Computer Simulation of the Dynamics of Complicated

Mechanism of Robot Manipulators," Engineering Cybernetics, Vol. 6,

pp. 65-70, 1974.
7. W.W. Armstrong,"Recursive Solution to the Equation of Motion of an N-Link

Manipulator," Proc. 5th World Congress on Theory of Machines and

Mechanisms, pp. 1343-1346, 1979.

8. R. Featherstone,"The Calculation of Robot Dynamics Using Articulated-Body

Inertia," Int. J. Robotics Research, Vol. 2(I), pp. 13-30, 1983.

9. G. Rodriguez,"Kalman Filtering, Smoothing and Recursive Robot Arm Forward

and Inverse Dynamics," IEEE J. Robotics and Automation, Vol. RA-3(6),

pp. 624-639, Dec. 1987.

10. G. Rodriguez and K. Kreutz-Delgado,"Spatial Operator Factorization and

Inversion of the Manipulator Mass Matrix," IEEE Trans. Robotics and

Automation, Vol. RA-8(1), pp. 65-76, Feb. 1992.

11. G. Rodriguez, K. Kreutz, and A. Jain,"A Spatial Operator Algebra for

Manipulator Modeling and Control," Int. J. Robotics Research, vol. I0(4),

pp. 371-381, Aug. 1991.

12. D. Rosental,"Order N Formulation for Equations of Motion of Multibody

Systems," Proc. SDIO/NASA Workshop on Multibody Simulation, pp. 1122-1150,

Sept. 1987.

13. D.S. Bae and E.J. Haug,"A Recursive Formulation for Constraint Mechanical

System Dynamics: Part I. Open Loop Systems," Mech. Struct. &Mach.,

Vol. 15(3), pp. 359-382, 1987.

14. A. Jain,"Unified Formulation of Dynamics for Serial Rigid Multibody

Systems," 3. Guidance, Control, and Dynamics, VOI. 14(3), pp. 531-542,

May/June 1991.

15. A. Fijany and R.E. Scheid,"Efficient Conjugate Gradient Algorithms for

Computation of the Manipulator Forward Dynamics," Proc. NASA Conf. Space

Telerobotics, Vol. IV, pp. 329-340, Jan. 1989.

16. A. Fijany and R.E. Scheid,"Fast Parallel Preconditioned Conjugate Gradient

Algorithms for Robot Manipulator Dynamics Simulation," To appear in J. of

Intelligent & Robotic Systems: Theory & Applications, 1992. Also, in JPL

Eng. Memorandum (Internal Document) EM 343-1196, Aug. 1991.

17. A. Fijany and A.K. Bejczy,"Parallel Algorithms and Architecture for

Computation of Robot Manipulator Forward Dynamics," Proc. IEEE Int. Conf.

Robotics and Automation, pp. 1156-1162, April 1991, Sacramento, CA.

18. H. Kasahara, H. Fujii, and M.]wata,"Parallel Processing of Robot Motion

Simulation," Proc.]Oth IFAC World Congress, July]987.

19. C.S.G. Lee and P.R. Chang,"Efficient Parallel Algorithms for Robot Forward

Dynamics Computation," IEEE Trans. Syst., Man, and Cybern., Vol. 18(2),

pp. 238-251, March/April 1988.

265

20. C.S.G. Lee and P.R. Chang,"Efficient Parallel Algorithms for Robot Inverse

Dynamics Computation," IEEE Trans. Syst., Man, and Cybern., Vol. 16(4),

pp. 532-542, July/August 1986.

21. I. Sharf, Parallel Simulation Dynamics for Open Multibody Chains, Ph.D.

Diss., Univ. of Toronto, Canada, Nov. 1990.

22. I. Sharf and G.M.T. D'Eleuterio,"Parallel Simulation Dynamics for Rigid

Multibody Chains," Proc. 12th Biennial ASME Conf. on Mechanical Vibration

and Noise, Montreal, Canada, Sept. 1989.

23. I. Sharf and G.M.T. D'Eleuterio,"Computer Simulation of Elastic Chains

Using a Recursive Formulation," Proc. IEEE Int. Conf. Robotics and

Automation, pp. 1539-1545, Philadelphia, PA, 1988.

24. I. Sharf and G.M.T. D'Eleuterio,"Parallel Simulation Dynamics for Elastic

Multibody Chains," Proc. IEEE Int. Conf. Robotics and Automation, pp. 740-
747, Cincinnati, OH, 1990.

25. J. Miklosko and V.E. Kotov (Eds.), Algorithms, Software, and Hardware of

Parallel Computers. Sprlnger-Verlag, 1984.

26. L. Hyafil and H.T. Kung,"The Complexity of Parallel Evaluation of Linear

Recurrences," J. ACM, Vol. 24(3), pp. 513-521, .July 1977.

27. P.C. Hughes and G.B. Slncarsin,"Dynamics of an Elastic Multibody Chain:

Part B - Global Dynamics," Dynamics and Stability of Systems, Vol. 4(38,4),
pp. 227-244, 1989.

28. C.J. Damaren and G.M.T. D'Eleuterio,"On the Relationship between Discrete-

Time Optimal Control and Recursive Dynamics for Elastic Multibody Chains,"

Contemporary Mathematics, Vol. 97, pp. 61-77, 1989.

29. J. Baumgarte,"Stabillzation of Constraints and Integrals of Motion in

Dynamical Systems," Computer Methods in Applied Mechanics and Engineering,
Vol. (I), pp. 1-16, 1972.

30. R.E. Roberson,"Constraint Stabilization for Rigid Bodies: An Extension of

Baumgarte's Method," Proc. IUTAM Symp. Dynamics of Multibody Systems,

pp. 274-289, Munich, 1978.

31. R.W. Cottle,"Manifestation of Schur Complement," Linear Algebra and its

Application, Vol. 8, pp. 189-211, 1974.

32. A. Fijany, I. Sharf, and G.M.T. D'Eleuterlo,"Parallel O(Log N) Algorithms

for Computation of Manipulator Forward Dynamics," Submitted to IEEE Trans.
Robot. Automat.

33. G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd Edition, The Johns
Hopkins Univ. Press, 1989.

34. G.Rodriguez,"Recursive Forward Dynamics for Multiple Robot Arms Moving a

Common Task Object," IEEE Trans. Robot. Automat., Vol. 5(4), Aug. 1989.

35. G. Rodriguez and K. Kreutz,"Recursive Mass Matrix Factorization and

Inversion: An Operator Approach to Open- and Closed-Chain Multibody

Dynamics," Jet Propulsion Lab. Publication 88-11, March 1988.

36. K.W. Lilly and D.E. Orin,"Efficient O(n) Computation of the Operational

Space Inertia Matrix," Proc. IEEE Int. Conf. Robotics & Automation,

pp. I014-I019, Cincinnati, OH, May 1990.

37. S. McMillan, P. Sadayappan, D.E. Orin,"Efficlent Dynamic Simulation of

Multiple-Manlpulator Systems with Singular Configurations," Proc. IEEE

Int. Conf. Robotics & Automation, May 1992.

38. O. Khatib,"The Operational Space Formulation in the Analysis, Design, and

Control of Manipulators," 3rd Int. Symp. Robotics Research, 1985.

39. O. Khatib,"A Unified Approach for Motion and Force Control of Robot

Manipulators: The Operational Space Formulation," IEEE J. Robot.

Automat., Vol. RA-3, pp. 43-53, Feb. 1987.

40. A. Fijany,"New Factorlzatlon Techniques and O(n) Algorithms for

Computation of Operational Space Mass Matrix and its Inverse," In

preparation.

41. R.W. Hockney and C.R. Jesshope, Parallel Computers, Adam Hilger Ltd., 1981.

266

m

